Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes.
نویسندگان
چکیده
The transcription factor NF-kappaB regulates expression of genes that are involved in inflammation, immune response, viral infection, cell survival, and division. However, the role of NF-kappaB in hypertrophic growth of terminally differentiated cardiomyocytes is unknown. Here we report that NF-kappaB activation is required for hypertrophic growth of cardiomyocytes. In cultured rat primary neonatal ventricular cardiomyocytes, the nuclear translocation of NF-kappaB and its transcriptional activity were stimulated by several hypertrophic agonists, including phenylephrine, endothelin-1, and angiotensin II. The activation of NF-kappaB was inhibited by expression of a "supersuppressor" IkappaBalpha mutant that is resistant to stimulation-induced degradation and a dominant negative IkappaB kinase (IKKbeta) mutant that can no longer be activated by phosphorylation. Furthermore, treatment with phenylephrine induced IkappaBalpha degradation in an IKK-dependent manner, suggesting that NF-kappaB is a downstream target of the hypertrophic agonists. Importantly, expression of the supersuppressor IkappaBalpha mutant or the dominant negative IKKbeta mutant blocked the hypertrophic agonist-induced expression of the embryonic gene atrial natriuretic factor and enlargement of cardiomyocytes. Conversely, overexpression of NF-kappaB itself induced atrial natriuretic factor expression and cardiomyocyte enlargement. These findings suggest that NF-kappaB plays a critical role in the hypertrophic growth of cardiomyocytes and may serve as a potential target for the intervention of heart disease.
منابع مشابه
Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells
Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...
متن کاملActivation of nuclear factor-κB is necessary for myotrophin-induced cardiac hypertrophy
The transcription factor nuclear factor-kappaB (NF-kappaB) regulates expression of a variety of genes involved in immune responses, inflammation, proliferation, and programmed cell death (apoptosis). Here, we show that in rat neonatal ventricular cardiomyocytes, activation of NF-kappaB is involved in the hypertrophic response induced by myotrophin, a hypertrophic activator identified from spont...
متن کاملA20 is dynamically regulated in the heart and inhibits the hypertrophic response.
BACKGROUND Nuclear factor (NF)-kappaB signaling has been implicated in cardiomyocyte hypertrophy. Here, we determine the cardiac regulation and biological activity of A20, an inhibitor of NF-kappaB signaling. METHODS AND RESULTS Mice were subjected to aortic banding, and A20 expression was examined. A20 mRNA upregulation (4.3+/-1.5-fold; P<0.05) was detected 3 hours after banding, coinciding ...
متن کاملEffects of a Proteasome Inhibitor on Cardiomyocytes in a Pressure-Overload Hypertrophy Rat Model: An Animal Study
BACKGROUND The ubiquitin-proteasome system (UPS) is an important pathway of proteolysis in pathologic hypertrophic cardiomyocytes. We hypothesize that MG132, a proteasome inhibitor, might prevent hypertrophic cardiomyopathy (CMP) by blocking the UPS. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and androgen receptor (AR) have been reported to be mediators of CMP and he...
متن کاملUrocortin induces interleukin-6 release from rat cardiomyocytes through p38 MAP kinase, ERK and NF-kappaB activation.
CRH and its structurally related peptide urocortin (Ucn) are released under stress. Ucn is a potent agonist for CRH-receptor 2 (CRH-R2), which is strongly expressed in rodent heart. Stress induces Ucn mRNA expression in the heart, where it may be cardioprotective. However, increasing evidence indicates that Ucn may also have pro-inflammatory actions. Here, we show that neonatal rat cardiomyocyt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 12 شماره
صفحات -
تاریخ انتشار 2001